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Abstract We implement a automated tactical prover TacticToe on top of the HOL4
interactive theorem prover. TacticToe learns from human proofs which mathematical
technique is suitable in each proof situation. This knowledge is then used in a Monte
Carlo tree search algorithm to explore promising tactic-level proof paths. On a single
CPU, with a time limit of 60 seconds, TacticToe proves 66.4% of the 7164 theorems
in HOL4’s standard library, whereas E prover with auto-schedule solves 34.5%. The
success rate rises to 69.0% by combining the results of TacticToe and E prover.

1 Introduction

Many of the state-of-the-art interactive theorem provers (ITPs) such as HOL4 [30],
HOL Light [14], Isabelle [34] and Coq [2] provide high-level parameterizable tactics for
constructing proofs. Tactics analyze the current proof state (goal and assumptions)
and apply non-trivial proof transformations. Formalized proofs take advantage of
different levels of automation which are in increasing order of generality: specialized
rules, theory-based strategies and general purpose strategies. Thanks to progress in
proof automation, developers can delegate more and more complicated proof obliga-
tions to general purpose strategies. Those are implemented by automated theorem
provers (ATPs) such as E prover [28]. Communication between an ITP and ATPs is
made possible by a “hammer” system [3,10]. It acts as an interface by performing
premise selection, translation and proof reconstruction. Yet, ATPs are not flawless
and more precise user-guidance, achieved by applying a particular sequence of spe-
cialized rules, is almost always necessary to develop a mathematical theory.
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In this work, we develop in the ITP HOL4 a procedure to select suitable tactics
depending on the current proof state by learning from previous proofs. Backed by
this machine-learned guidance, our prover TacticToe executes a Monte Carlo tree
search [6] algorithm to find sequences of tactic applications leading to an ITP proof.

1.1 The problem

An ITP is a development environment for the construction of formal proofs in which
it is possible to write a proof as a sequence of applications of primitive inference rules.
This approach is not preferred by developers because proving a valuable theorem
requires often many thousands of primitive inferences. The preferred approach is to
use and devise high-level tools and automation that abstract over useful ways of
producing proof pieces. A specific, prevalent instance of this approach is the use of
tactics for backward or goal-directed proof. Here, the ITP user operates on a proof
state, initially the desired conjecture, and applies tactics that transform the proof
state until it is solved. Each tactic performs a sound transformation of the proof
state: essentially, it promises that if the resulting proof state can be solved, then so
can the initial one. This gives rise to a machine learning problem: can we learn a
mapping from a given proof state to the next tactic (or sequence of tactics) that will
productively advance the proof towards a solution?

Goals and theorems. A goal (or proof state) is represented as a sequent. A sequent
is composed of a set of assumptions and a conclusion, all of which are higher-order
logic formulas [12]. When a goal is proven, it becomes a theorem. And when the
developer has given the theorem a name, we refer to it as a top-level theorem.

Theories and script files. Formal developments in HOL4 are organized into named
theories, which are implemented by script files defining modules in the functional
programming language SML. Each script file corresponds to a single theory, and
contains definitions of types and constants as well as statements of theorems to-
gether with their proofs. In practice, tactic-based proofs are written in an informally
specified embedded domain-specific language: the language consisting of pre-defined
tactics and tacticals (functions that operate on tactics). However, the full power of
SML is always available for users to define their own tactics or combinations thereof.

Tactics in HOL4. A tactic is a function that takes a goal (or proof obligation) and
returns a list of goals (subgoals of the original goal) together with a validation func-
tion. Calling the validation function on a list of theorems, corresponding to the list of
subgoals, results in a theorem corresponding to the original goal. For example, if the
list of subgoals is empty, then calling the validation function on the empty list yields
the original goal sequent as a theorem. In this way, tactics implement the plumbing
of goal-directed proof construction, transforming the conjecture by reasoning in a
backward manner. Since validation functions are only important to check the final
proof, we omit them during the description of the proof search algorithm. We denote
by t(g) the list of goals produced by the application of a tactic t to a goal g.



TacticToe: Learning to Prove with Tactics 3

1.2 Contributions

This paper extends work described previously [11], in which we proposed the idea
of a tactic-based prover based on supervised learning guidance. We achieved a 39%
success rate on theorems of the HOL4 standard library by running TacticToe with a
5 second timeout. The contributions of this paper and their effect on our system are:

– Monte Carlo tree search (MCTS) replaces A* as our search algorithm (Section 4).
The MCTS algorithm gives more balanced feedback on the success of each proof
step by comparing subtrees of the search tree instead of leaves. The policy and
value function are learned through supervised learning.

– Proof guidance required by MCTS is given by prediction algorithms through
supervised learning (Section 3). These predictors are implemented for three kinds
of objects: tactics, theorems, and lists of goals.

– We introduce an orthogonalization process that eliminates redundant tactics
(Section 6).

– We introduce a tactic abstraction mechanism (Section 7), which enables us to
create more general and flexible tactics by dynamically predicting tactic argu-
ments.

– The internal ATP Metis is complemented by asynchronous calls to E prover (Sec-
tion 4.3) to help TacticToe during proof search.

– Proof recording at the tactic level is made more precise (Section 8). We now
support pattern matching constructions and opening SML modules.

– Evaluation of TacticToe with a 60 seconds timeout achieves a 66% success rate on
the standard library. Comparisons between TacticToe and E prover on different
type of problems are reported in Section 9.

– Minimization and embellishment of the discovered proof facilitates user interac-
tion (Section 10).

1.3 Plan

The different components depicted in Figure 1 give a high-level overview of Tactic-
Toe and our approach to generating tactic-level proofs by learning from recorded
knowledge. On one side, we have the learning aspect of TacticToe whose purpose is
to produce a high quality function to predict a tactic given a goal state. Tactic pre-
diction uses a knowledge base that is gleaned, in the first place, from human-written
proofs. On the other side, we have the proving aspect of TacticToe, which uses tactic
prediction to guide a proof search algorithm in the context of a given conjecture.

This paper is organized firstly around the proving aspect: We define the proof
search tree (Section 2), explain the essence of our approach to learning to predict
tactics (Section 3), and then present the prediction-guided proof search algorithm
(Section 4). We also describe our preselection method (Section 5) for speeding up
prediction during search. Afterwards, we delve into some details of the learning
aspect of TacticToe: We describe approaches to improving the knowledge base that
supports prediction (orthogonalization in Section 6 and abstraction in Section 7),
and describe how we build the knowledge base in the first place by extracting and
recording tactic invocations from a library of human-written proofs (Section 8).

In Section 9, we present an evaluation of TacticToe on a large set of theorems
originating from HOL4. Finally, we present a feature of TacticToe that makes it
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Fig. 1 Relation between modules of the learning and proving toolchains. Functions are rep-
resented by rectangles and objects by ellipses.

more suitable for use by human provers, namely, minimization and prettification
(Section 10) and compare TacticToe’s generated proofs to human proofs (Section 11).

2 Search Tree

The application of a tactic to an initial conjecture produces a list of goals. Each of
the created goals can in turn be the input to other tactics. Moreover, it is possible to
try multiple tactics on the same goal. In order to keep track of progress made from
the initial conjecture, we organize goals and tactics into a graph with lists of goals
as nodes and tactics as edges (See Definition 1).

In this section, we only give a description of the graph at a given moment of the
search, after some number of tactic applications. Construction of the tree is done
by the MCTS algorithm in Section 4. The MCTS algorithm is guided by prediction
algorithms presented in Section 3.

Definition 1 (search tree)
A search tree T is a sextuple (T,G,A, T,G,A) that respects the following conditions:

– T is a set of tactics, G is a set of goals and A is a set of nodes representing lists
of goals. All objects are tagged with their position in the tree (see Figure 2).
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Fig. 2 A node of a search tree a0, the list of goals g0 . . . gn it contains and the nodes a1 . . . am

derived from the application of the tactics t1 . . . tm to gi.

– T is a function from G to P(T). It takes a goal and return the set of tactics
already applied to this goal.

– G is a function from A to P(G). It takes a node and returns the list of goals of
this node.

– A is a function that takes a pair (g, t) ∈ G × T such as t ∈ T (g) and returns
a node A(g, t) such that t(g) = G(A(g, t)). In other words, the output t(g) is
exactly the list of goals contained in A(g, t).

– It is acyclic, i.e., a node cannot be a strict descendant (see Definition 3) of itself.
– There is exactly one node with no parents. This root node contains exactly one

goal which is the initial goal (conjecture).

If no explicit order is given, we assume that the sets T,G,A are equipped with an
arbitrary total order. Figure 2 depicts part of a search tree. Goals, nodes and tactics
are represented respectively by circles, rectangles and arrows.

In the following, properties are defined in the context of a search tree T. In
Definition 2, we specify different states for a goal: open, pending or solved. There,
we define what a solved goal and solved node are by mutual recursion on the number
of steps it takes to solve a goal and a node.

Definition 2 (solved goal, solved nodes, open goal, pending goal)
The set of solved nodes A∗ and the set of solved goals G∗ are defined inductively by:

A0 =def {a ∈ A | G(a) = ∅}
G0 =def {g ∈ G | ∃t ∈ T (g). A(g, t) ∈ A0}

An+1 =def {a ∈ A | ∀g ∈ G(a). g ∈ Gn}
Gn+1 =def {g ∈ G | ∃t ∈ T (g). A(g, t) ∈ An+1}

A∗ =def
⋃
n∈N

An G∗ =def
⋃
n∈N

Gn

We call a goal unsolved if it is not in the set of solved goals. Similarly, we call
a node unsolved if it does not belong to the set of solved nodes. The open goal of
a node is the first unsolved goal of this node according to some preset order. The
other unsolved nodes are called pending nodes. If a node is unsolved, then it contains
a unique open goal. During MCTS exploration, we do not explore pending goals of
an unsolved node before its open goal is solved which justifies our terminology. In
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other words, our search tree has the following property: if g is a pending node then
T (g) is empty.

In Definition 3, we define relations between goals and nodes in terms of parent-
hood.

Definition 3 (children, descendant, ancestors)
The children of a goal g is a set of nodes defined by:

Children(g) = {A(g, t) ∈ A | t ∈ T (g)}

By extension, we define the children of a node a by:

Children(a) =
⋃

g∈G(a)

Children(g)

The descendants of a node a by:

Descendants0(a) =def {a}

Descendantsn+1(a) =def
⋃

a′∈Descendantsn(a)

Children(a′)

Descendants(a) =def
⋃
n∈N

Descendantsn(a)

And the ancestors of a node a by:

Ancestors(a) =def {b ∈ A | a ∈ Descendants(b)}

In Definition 4, we decide if a tactic is productive based on its contribution to
the search tree.

Definition 4 (productive tactic) The application of a tactic t on an open goal g is
called productive if and only if all the following conditions are satisfied:

– It does not fail or timeout. To prevent tactics from looping, we interrupt tactics
after a short amount of time (0.05 seconds).

– It does not loop, i.e., its output does not contain any goals that appear in the
ancestor of the node of the current goal.

– It is not a redundant step, i.e., there does not exist t′ in T (g) such as t′(g) ⊆ t(g).

The third point of the definition is a partial attempt at preventing confluent
branches. The general case where two branches join after n steps is handled by a
tactic cache which memorizes tactic effects on goals. This cache allows faster re-
exploration of confluent branches which remain separated in the search tree.
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3 Prediction

The learning-based selection of relevant lemmas significantly improves the automa-
tion in hammer systems [4]. In TacticToe we use the distance-weighted k nearest-
neighbour classifier [8] adapted for lemma selection [18]. It allows for hundreds of
predictions per second, while maintaining very high prediction quality [20]. We rely
on this supervised machine learning algorithm to predict objects of three kinds:
tactics, theorems and lists of goals. The number of predicted objects k is called
the prediction radius. For a goal g, we denote by Predictionstactic

k (g) (respectively
Predictionstheorem

k (g) and Predictionsgoal list
k (g)) the k tactics (respectively theorems

and lists of goals) selected by our prediction algorithm.
We discuss below the specifics associated with the prediction of each kind of

object. In particular, we present the dataset from which objects are selected and the
purpose of the selection process. The similarity measure backing the predictions is
described in Section 3.1 and three methods for improving the speed and quality of
the predictions are presented in Sections 5, 6 and 7.

Tactics To start with, we build a database of tactics consisting of goal-tactic pairs
recorded from successful tactic applications in human proofs (recording will be dis-
cussed in Section 8). During proof search, the recorded goals will be reordered ac-
cording to their similarity with a target goal g (usually the open goal of a node). The
recorded pairs and their similarity to g induce an order on tactics. Intuitively, tactics
which have been successful on goals similar to g should be tried first. Indeed, they
are more likely to lead to a proof. This predicted tactic order is then transformed
into a prior policy of our MCTS algorithm (see Section 4.2). Tactic selection is also
used to improve the quality of the database of tactics during orthogonalization (see
Section 6).

Theorems as Arguments of Tactics We first collect a set of theorems for our predictor
to select from. It includes the HOL4 theorem database and theorems from the local
namespace. Predicted tactics during proof search and orthogonalization may include
tactics where arguments (lists of theorems) have been erased (see Section 7). We
instantiate those tactics by theorems that are syntactically the closest to the goal as
they are more likely to help. The same algorithm selects suitable premises for ATPs
integrated with TacticToe (see Section 4.3).

Lists of Goals as Output of Tactics We compile a dataset of tactic outputs during
orthogonalization (see Section 6). Some elements of this set will be considered pos-
itive examples (see Section 4.2). During proof search, given a list of goals l created
by a tactic, we select a set of lists of goals that are most similar to l. The ratio of
positive examples in the selection gives us a prior evaluation for MCTS.

3.1 Feature Extraction and Similarity Measures

We predict tactics through their associated goals. So, the features for each kind of
object can be extracted from different representations of mathematical formulas. We
start by describing features for HOL4 terms. From there, we extend the extraction
mechanism to goals, theorems and lists of goals. Duplicated features are always
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removed so that each object has an associated set of features. Here are the kinds of
features we extract from terms:

– names of constants, including the logical operators,
– type constructors present in the types of constants and variables,
– subterms with all variables replaced by a single placeholder V ,
– names of the variables.

Goals (respectively theorems) are represented by pairs consisting of a list of terms
(assumptions) and a term (conclusion). We distinguish between features of the as-
sumptions and features of the conclusion by adding a different tag to elements of each
set. The feature of a goal (respectively theorem) are the union of all these tagged
features. From that, we can construct features for a list of goals by computing the
union of the features of each goal in the list.

We estimate the similarity between two objects o1 and o2 through their respective
feature sets f1 and f2. The estimation is based on the frequency of the features in the
intersection of f1 and f2. A good rule of thumb is that the rarer the shared features
are, the more similar two goals should be. The relative rarity of each feature can be
estimated by calculating its TF-IDF weight [17]. We additionally raise these weights
to the sixth power giving even more importance to rare features [4].

The first similarity measure sim1 sums the weight of all shared features to com-
pute the total score. In a second similarity measure sim2, we additionally take the
total number of features into account, to reduce the seemingly unfair advantage of
big feature sets in the first scoring function.

sim1(o1, o2) =
∑

f∈f0∩f1
tf idf(f)6

sim2(o1, o2) =
∑

f∈f0∩f1
tf idf(f)6

ln(e+ |f0|+ |f1|)
In our setting, making predictions for an object o consists of sorting a set of

objects by their similarity to o. We use sim1 for tactics and theorems and sim2
for lists of goals. The reason why sim1 is used for predicting tactics is that tactics
effective on a large goal g are often also suitable for a goal made of sub-formulas
of g. The same monotonicity heuristic can justify the use of sim1 for theorems.
Indeed, in practice a large theorem is often a conjunction of theorems from the same
domain. And if a conjunction contains a formula related to a problem, then the other
conjuncts from the same domain may also help to solve it.

4 Proof Search

Our prediction algorithms are not always accurate. Therefore, a selected tactic may
fail, proceed in the wrong direction or even loop. For that reason, predictions need to
be accompanied by a proof search mechanism that allows for backtracking and can
choose which proof tree to extend next and in which direction. Our search algorithm
is a Monte Carlo tree search [6] algorithm that relies on a prior evaluation func-
tion and a prior policy function. Those priors are learned through direct supervised
learning for the policy and via the data accumulated during orthogonalization for
the evaluation. Therefore, this MCTS algorithm does not need to rely on roll outs for
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evaluation. The policy and evaluation are estimated by the simple supervised k-NN
algorithm. A characteristic of the MCTS algorithm is that it offers a good trade-
off between exploitation and exploration. This means that the algorithm searches
deeper the more promising branches and leaves enough time for the exploration of
less likely alternatives.

Remark 1 Neural networks trained through reinforcement learning can be very effec-
tive for approximating the policy and evaluation as demonstrated in .e.g. AlphaGo
Zero [29]. But training neural networks is computationally expensive and has not
yet been proven effective in our context. That is why we chose a simpler machine
learning model for our project.

We first describe the proof search algorithm and explain later how to compute
the prior policy PriorPolicy and prior evaluation PriorEvaluation functions.

4.1 Proof exploration

The proof search starts by creating a search tree during initialization. The search tree
then evolves by the repetitive applications of MCTS steps. A step in the main loop of
MCTS consists of three parts: node selection, node extension, and backpropagation.
And the decision to stop the loop is taken by the resolution module.

Initialization The input of the algorithm is a goal g (also called conjecture) that we
want to prove. Therefore the search tree starts with only one node containing the
list of goals [g].

Node selection Through node extension steps the search tree grows and the number
of paths to explore increases. To decide which node to extend next, the MCTS
algorithm computes for each node a value (see Definition 5) that changes after each
MCTS step. The algorithm that performs node selection starts from the root of the
search tree. From the current node, the function CompareChildren chooses the child
node with the highest value among the children of its open goal.

If the highest children value is higher than the widening policy (see Section 4.2),
then the selected child becomes the current node, otherwise the final result of node
selection is the current node. The following pseudo-code illustrates our node selection
algorithm:
CurrentNode = Root(Tree);
while true do

if Children(CurrentNode) = ∅ then break;
(BestChild, BestValue) = CompareChildren (CurrentNode);
if WideningPolicy (ChosenNode) ≥ BestValue then break;
CurrentNode = BestChild

end;
return CurrentNode;

Definition 5 (Value)
The value of the ith child ai of the open goal of a parent node p is determined by:

Value(ai) = CurEvaluation(ai) + cexploration ∗ Exploration(ai)
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The current evaluation CurEvaluation(ai) is the average evaluation of all de-
scendants of ai including node extension failures.

CurEvaluation(ai) =
∑

a′∈Descendants(ai)

PriorEvaluation(a′)
|Descendants(ai)|+ Failure(ai)

where the number Failure(ai) is the number of failures that occurred during node
extension from descendants of ai .

The exploration term is determined by the prior policy and the current policy.
The current policy is calculated from the number of times a node x has been traversed
during node selection, denoted Visit(x).

Exploration(ai) = PriorPolicy(ai)
CurPolicy(ai)

CurPolicy(ai) = 1 + Visit(ai)√
Visit(p)

The policy can be seen as a skewed percentage of the number of times a node was
visited. The square root favors exploration of nodes with few visits. The coefficient
cexploration is experimentally determined and adjusts the trade-off between exploita-
tion and exploration.

Node extension Let a be the result of node selection. If a is a solved node or the
descendant of a solved node, then extending a would not be productive and the
algorithm reports a failure for this MCTS step. If a is not solved, it applies the best
untested tactic t on the open goal g of this node according to the prediction order
for g. If no such tactic exists or if t is not productive, the algorithm returns a failure.
If node extension succeeds, a new node containing t(g) is added to the children of a.

Backpropagation During backpropagation we update the statistics of all the nodes
traversed or created during this MCTS step:

– Their visit number is incremented.
– If node extension failed, their failure count is incremented.
– If node extension succeeded, they inherit the evaluation of the created child.

These changes update the current evaluation and the current policy of the tra-
versed nodes. After completing backpropagation, the process loops back to node
selection.

Resolution The search ends when the algorithm reaches one of these 3 conditions:

– It finds a proof, i.e., the root node is solved. In this case, the search returns a
minimized and prettified tactic proof (see Section 10).

– It saturates, i.e., there are no tactics to be applied to any open goal. This occurs
less than 0.1 percent of the time in the full-scale experiment. And this happens
only at the beginning of the HOL4 library, where the training data has very few
tactics.

– It exceeds a given time limit (60 seconds by default).
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4.2 Supervised learning guidance

Our MCTS algorithm relies on the guidance of two supervised learning methods.
The prior policy estimates the probability of success of a tactic t on a goal g and
associate it with the potential children that would be created by the application of t
to g. The prior evaluation judges if a branch is fruitful by analyzing tactic outputs.
Both priors influence the rates at which branches of the search tree are explored.

Prior policy Similarity between goals produced by the tactic predictor are hard to
translate into a prior policy, so we rely solely on the prediction order to estimate
the probability with which each tactic should be tried. Let T be a search tree after
a number of MCTS steps. Let p be a selected node in T and g its open goal. We
order the list of n productive tactics already applied to g by their similarity score.
We note the resulting list t0, . . . , tn−1. Let cpolicy be a constant heuristic optimized
during our experiments. We calculate the prior policy of a child ai produced by the
tactic ti by:

PriorPolicy(ai) = (1− cpolicy)i ∗ cpolicy

In order to include the possibly of trying more tactics on g we define the widening
policy on the parent p for its open goal g to be:

WideningPolicy(p) = (1− cpolicy)n ∗ cpolicy

Prior evaluation We now concentrate on the definition of a reasonable evaluation
function for the output of tactics. Intuitively, a list of goals is worth exploring further
if we believe there exists a short proof for it. We could estimate the likelihood of
finding such a proof from previous proof searches. However, extracting lists of goals
from all proof attempts creates too much data which slows down the prediction
algorithm. So, we only collect outputs of tactics tested during orthogonalization
(see Section 6). We declare a list of goals l to be positive if it has been produced
by the winner of an orthogonalization competition. The set of positive examples
in Predictionsgoal list

k (l) is denoted Positivegoal list
k (l). We chose k = 10 as a default

evaluation radius in our experiments. And we evaluate a node a through the list of
goals G(a) it contains using the prior evaluation function:

PriorEvaluationk(a) =
|Positivegoal list

k (G(a))|
k

4.3 ATP Integration

General-purpose proof automation mechanisms which combine proof translation to
ATPs with machine learning (“hammers”) have become quite successful in enhanc-
ing the automation level in proof assistants [3]. Since external automated reasoning
techniques sometimes outperform the combined power of tactics, we combine the Tac-
ticToe search with general purpose provers such as the ones found in HOL(y)Hammer
for HOL4 [10].
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HOL4 already integrates a superposition-based prover Metis [16] for this purpose.
It is already recognized by the tactic selection mechanism in TacticToe and thanks
to abstraction, its premises can be predicted dynamically. Nevertheless, we think
that the performance of TacticToe can be boosted by giving the ATP Metis a special
status among tactics. This arrangement consists of always predicting premises for
Metis, giving it a slightly higher timeout and trying it first on each open goal. Since
Metis does not create new goals, these modifications only induce an overhead that
increases linearly with the number of nodes.

In the following, we present the implementation of asynchronous calls to E prover [28]
during TacticToe’s proof search. Other external ATPs can be integrated with Tactic-
Toe in a similar manner.

First, we develop a tactic which expects a list of premises as an argument and calls
E prover on the goal together with the premises translated to a first-order problem.
If E prover succeeds on the problem, the premises used in the external proof are used
to reconstruct the proof inside HOL4 with Metis. Giving a special status to E prover
is essential as E prover calls do not appear in human-written tactic proofs. Here, we
use an even higher timeout (5 seconds) and a larger number of predicted premises
(128). We also try E prover first every time a new goal is created. Since calls to
E prover are computationally expensive, they are run in parallel and asynchronously.
To update the MCTS values, the result of each thread is back-propagated in the tree
after completion. This avoids slowing down TacticToe’s search loop. The number of
asynchronous calls to E prover that can be executed at the same time is limited by
the number of cores available to the user.

5 Preselection

In order to speed up the predictions during the search for a proof of a conjecture c,
we preselect 500 goal-tactic pairs and 500 theorems and a larger number of lists of
goals induced by the selection of goal-tactic pairs. Preselected objects are the only
objects available to TacticToe’s search algorithm for proving c.

The first idea is to select goal-tactic pairs and theorems by their similarity with c
(i.e. Predictionstactic

500 (c) and Predictionstheorem
500 (c)). However, this selection may not

be adapted at later stages of the proof where goals may have drifted significantly
from c. In order to anticipate the production of diverse goals, our prediction during
preselection takes dependencies between objects of the same dataset into account.
This dependency relation is asymmetric. Through the relation, each object has mul-
tiple children and at most one parent. Once a dependency relation is established
we can calculate a dependency score for each object, which is the maximum of its
similarity score and the similarity score of its parent. Finally, the 500 entries with
highest dependency score are preselected in each dataset.

We now give a mathematical definition of the dependency relation for each kind
of object.

Definition 6 (Dependencies of a goal-tactic pair)
Let F be the set of recorded goal-tactic pairs. The dependencies D∗ of a goal-tactic
pair (t0, g0) are inductively defined by:
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D0 =def {(t0, g0)}
Dn+1 =def Dn ∪ {(t, g) ∈ F | ∃(t′, g′) ∈ Dn. g ∈ t′(g′)}

D∗ =def
⋃
i∈N

Di

Definition 7 (Dependencies of a theorem)
Let R be the set of recorded theorems. The dependencies of a theorem t are the
set of top-level theorems in R appearing in the proof of t. These dependencies are
recorded by tracking the use of top-level theorems through the inference kernel [10].

We do preselection also for lists of goals. To preselect a list of goals l from our
database of lists of goals, we consider the tactic input g that was at the origin of
the production of l during orthogonalization. The list l is preselected if and only if
g appears in the 500 preselected goal-tactic pairs.

6 Orthogonalization

Different tactics may transform a single goal in the same way. Exploring such equiv-
alent paths is undesirable, as it leads to inefficiency in automated proof search.
To solve this problem, we modify the construction of the tactics database. Each
time a new goal-tactic pair (t, g) is extracted from a tactic proof and about to be
recorded, we consider if there does not already exist a better tactic for g in our
database. To this end, we organize a competition between the k closest goal-tactic
pairs Predictionstactic

k (g). In our experiments, the default orthogonalization radius is
k = 20. The winner is the tactic that subsumes (see Definition 11) the original tactic
on g and that appears in the largest number of goal-tactic pairs in the database. The
winning tactic w is then associated with g, producing the pair (w, g) and is stored
in the database instead of the original pair (t, g). As a result, already successful tac-
tics with a large coverage are preferred, and new tactics are considered only if they
provide a different contribution. We now give a formal definition of the concepts
of subsumption and coverage that are required for expressing the orthogonalization
algorithm.

Definition 8 (Coverage)
Let T be the database of goal-tactic pairs. We define the coverage Coverage(t) of a
tactic t by the number of times this tactic appears in T. Expressing this in a formula,
we get:

Coverage(t) =def |{g | (t, g) ∈ T}|
Intuitively, this notion estimates how general a tactic is by counting the number of
different goals it is useful for.

Definition 9 (Goal subsumption)
A goal subsumption ≤ is a partial relation on goals. Assuming we have a way to esti-
mate the number of steps required to solve a goal, a general and useful subsumption
definition is for example:

g1 ≤ g2 ⇔def g1 has a proof with a length shorter or equal to the proof of g2
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By default, we however choose for efficiency reasons a minimal subsumption defined
by:

g1 ≤ g2 ⇔def g1 is α-equivalent to g2

We can naturally extend any goal subsumption to a subsumption on lists of goals.

Definition 10 (Goal list subsumption)
A goal list subsumption is a partial relation on lists of goals. Given two lists of goals
l1 and l2, we define it from the goal subsumption ≤ by:

l1 ≤ l2 ⇔def ∀g1 ∈ l1. ∃g2 ∈ l2. g1 ≤ g2

This allows us to define subsumption for tactics.

Definition 11 (Tactic subsumption)
Given two non-failing tactics t1 and t2 on g, a tactic t1 subsumes a tactic t2 on a
goal g, denoted ≤g, when:

t1 ≤g t2 ⇔def t1(g) ≤ t2(g)

If one of the tactics is failing then t1 and t2 are not comparable through this
relation.

Finally, the winning tactic of the orthogonalization competition can be expressed
by the formula:

O(t, g) = argmax
x ∈ Predictionstactic

k
(g)∪{t}

{Coverage(x) | x ≤g t}

A database built with the orthogonalization process thus contains (O(t, g), g)
instead of (t, g).

7 Abstraction

One of the major weaknesses of the previous version of TacticToe was that it could not
create its own tactics. Indeed, sometimes no previous tactic is adapted for a certain
goal and creating a new tactic is necessary. In this section we present a way to create
tactics with different arguments by abstracting them and re-instantiating them using
a predictor for that kind of argument. In the spirit of the orthogonalization method,
we will try to create tactics that are more general but have the same effect as the
original one. The generalized tactics are typically slower that their original variants,
but the added flexibility is worthwhile in practice. Moreover, since we impose a
timeout on each tactic (0.05 seconds by default), very slow tactics fail and thus are
not selected.
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Abstraction of Tactic Arguments The first step is to abstract arguments of tactics
by replacing them by a placeholder, creating a tactic with an unspecified argument.
Suppose we have a recorded tactic t. Since t is a SML code tree, we can try to
abstract any of the SML subterms. Let u be a SML subterm of t, and h a variable
(playing the role of a placeholder), we can replace u by h to create an abstracted
tactic. We denote this intermediate tactic t[h/u]. By repeating the process, multiple
arguments may be abstracted in the same tactic. Ultimately, the more abstractions
are performed the more general a tactic is, as many tactics become instances of the
same abstracted tactic. As a consequence, it becomes harder and harder to predict
suitable arguments. In our experiments, we create one abstraction t̂ for each tactic t
by abstracting all subterms of type theorem list in t.

Instantiation of an Abstracted Tactic An abstracted tactic is not immediately ap-
plicable to a goal, since it contains unspecified arguments. To apply an abstracted
tactic t̂, we first need to instantiate the placeholders h inside t̂. Because it is difficult
to build a general predictor effective on each type of argument, we manually design
different argument predictors for each type. Those predictors are given a goal g as
input and return the best predicted argument for this goal.

Our default algorithm relies on argument predictions for theorems with a radius
of 16. It uses the produced list Predictionstactic

16 (g) to replace all the placeholders in
t̂. The type of theorem lists is a very common type in HOL4 proofs and theorems
contain enough information to be predicted accurately.

Selection of Abstracted Tactics As abstracted tactics do not appear in human proofs,
we need to find a way to predict them so that they can contribute to the TacticToe
proof search. A straightforward idea is to try t̂ before t during the proof search.
However, this risks doing unnecessary work as the two may perform similar steps.
Therefore, we would like to decide beforehand if one is better than the other. In fact,
we can re-use the orthogonalization module to do this task for us. We add t̂ to the
competition, initially giving it the coverage of t. If t̂ wins, it is associated with g and
is included in the database of tactic features and thus can be predicted during proof
search. After many orthogonalization competitions, the coverage of t̂ may exceed
the coverage of t. At this point, the coverage of t̂ is estimated on its own and not
inherited from t anymore.

8 Proof Recording

Recording proofs in an LCF-style proof assistant can be done at different levels. In
HOL4 all existing approaches relied on modifying the kernel. This was used either
to export the primitive inference steps [35,23] or to record dependencies of theo-
rems [10]. This was not suitable for our purpose of learning proving strategies at
the intermediate tactic level. We therefore discuss recording proofs in an LCF-style
proof assistant, with the focus on HOL4 in this section. Rather than relying on the
underlying programming language, we parse the original script file containing tactic
proofs. This enables us to extract the code of each tactic. Working with the string
representation of a tactic is better than working with its value:
– Equality between two functions is easy to compute from their string representa-

tion, which allows us to avoid predicting the same tactic repeatedly.
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– The results of TacticToe can be returned in a readable form to the user. In this
way, the user can learn from the feedback, analyze the proof and possibly improve
on it. Furthermore TacticToe does not need to be installed to run tactic proofs
generated by TacticToe. In this way, the further development of TacticToe does
not affect the robustness of HOL4.

– It is difficult (probably impossible) to transfer SML values between theories, since
they are not run in the same HOL4 session. In contrast, SML code can be exported
and imported.

– To produce a tactic value from a code is easy in SML, which can be achieved by
using a reference to a tactic and updating it with the function use.

In order to transfer our tactic knowledge between theories, we want to be able to
re-use the code of a tactic recorded in one theory in another. We also would like to
make sure that the code is interpretable and that its interpretation does not change
in the other theory.

Even when developing one theory, the context is continually changing: modules
are opened and local identifiers are defined. Therefore, it is unlikely that code ex-
tracted from a tactic proof is interpretable in any other part of HOL4 without any
post-processing. To solve this issue, we recursively replace each local identifier by
its definition until we are able to write any expression with global identifiers only.
Similarly, we prefix each global identifier by its module. We call this process global-
ization. The result is a standalone SML code executable in any HOL4 theory. In the
absence of side effects, it is interpreted in the same way across theories. Therefore,
we can guarantee that the behavior of recorded stateless tactics does not change.
Even with some stateful tactics, the prediction algorithm is effective because most
updates on the state of HOL4 increase the strength of stateful tactics.

8.1 Implementation

We describe in more detail our implementation of the recording algorithm. It consists
of 4 phases: tactic proof extraction, tactic proof globalization, tactic unit wrapping,
and creation of goal-tactic pairs.

Because of the large number of SML constructions, we only describe the effect of
these steps on a running example that contains selected parts of the theory of lists.

Example 1 (Running example)
open boolLib Tactic Prim rec Rewrite
. . .
val LIST INDUCT TAC = INDUCT THEN list INDUCT ASSUME TAC
. . .
val MAP APPEND = store thm("MAP_APPEND",
‘‘∀(f:α→β) l1 l2. MAP f (APPEND l1 l2) = APPEND (MAP f l1) (MAP f l2)‘‘,
STRIP TAC THEN LIST INDUCT TAC THEN ASM REWRITE TAC [MAP, APPEND])

The first line of this script file opens modules (called structures in SML). Each
of the modules contains a list of global identifiers which become directly accessible
in the rest of the script. A local identifier LIST INDUCT TAC is declared next, which
is a tactic that performs induction on lists. Below that, the theorem MAP APPEND is
proven. The global tactic STRIP TAC first removes universal quantifiers. Then, the
goal is split into a base case and an inductive case. Finally, both of these cases are
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solved by ASM REWRITE TAC [MAP, APPEND], which rewrites assumptions with the
help of theorems previously declared in this theory.

We first parse the script file to extract tactic proofs. Each of them is found in
the third argument of a call to store thm. The result of tactic proof extraction for
the running example in presented in Example 2.

Example 2 (Tactic proof extraction)
STRIP TAC THEN LIST INDUCT TAC THEN ASM REWRITE TAC [MAP, APPEND]

In the next phase, we globalize identifiers of the tactic proofs. Infix operators such
as THEN need to be processed in a special way so that they keep their infixity status
after globalization. For simplicity, the globalization of infix operators is omitted
in Example 3. In this example, the three main cases that can happen during the
globalization are depicted. The first one is the globalization of identifiers declared
in modules. The global identifiers STRIP TAC and ASM REWRITE TAC are prefixed by
their module Tactic. In this way, they will still be interpretable whether Tactic
was open or not. The local identifier LIST INDUCT TAC is replaced by its definition
which happens to contain two global identifiers. The previous paragraph describes
the globalization for all identifiers except local theorems. We do not replace a local
theorem by its tactic proof (which its SML definition) because we want to avoid
unfolding proofs inside other proofs. If the theorem is stored in the HOL4 database
available across HOL4 developments, we can obtain the theorem value by calling
DB.fetch. Otherwise the globalization process fails and the local theorem identifier
is kept unchanged. A recorded tactic with an unchanged local theorem as argument
is only interpretable inside the current theory.

Example 3 (Globalization)
Tactic.STRIP TAC THEN
Prim rec.INDUCT THEN (DB.fetch "list" "list_INDUCT") Tactic.ASSUME TAC THEN
Rewrite.ASM REWRITE TAC [DB.fetch "list" "MAP", DB.fetch "list" "APPEND"]

Running the globalized version of a tactic proof will have the exact same effect
as the original. But since we want to extract information from this proof in the form
of tactics and their input goals, we modify it further. In particular, we need to define
at which level we should record the tactics in the tactic proof. The simplest idea
would be to record all SML subexpressions of type tactic. However, it will damage
the quality of our data by dramatically increasing the number of tactics associated
with a single goal. Imagine a tactic proof of the form A THEN B THEN C; then the
tactics A, A THEN B and A THEN B THEN C would be valid advice for something close
to their common input goal. The tactic A THEN B THEN C is likely to be too specific.
In contrast, we can consider the tactic REPEAT A that is repetitively calling the tactic
A until A has no effect. For such calls, it is often preferable to record a single call
to REPEAT A rather than multiple calls to A. Otherwise branches after each call to
A would be necessary as part of proof search. To sum up, we would like to record
only the most general tactics which make the most progress on a goal. As a trade-off
between these two objectives, we split proofs into tactic units.

Definition 12 (Tactic unit) A tactic unit is an SML expression of type tactic that
does not contain an infix operator at its root.
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Because such tactic units are constructed from visual information present in the
tactic proof, they often represent what a human user considers to be a single step of
the proof.

To produce the final recording tactic proof, we encapsulate each tactic unit in a
recording function R (see Example 4). In order to record tactics in all HOL4 theories,
we replace the original proof by the recording proof in each theory and rebuild the
HOL4 library.

Example 4 (Tactic unit wrapping)

R "Tactic.STRIP_TAC" THEN
R "Prim_rec.INDUCT_THEN (DB.fetch \"list\" \"INDUCT\") Tactic.ASSUME_TAC" THEN
R "Rewrite.ASM_REWRITE_TAC

[DB.fetch \"list\" \"MAP\", DB.fetch \"list\" \"APPEND\"]"

At run time the function R is designed to observe what input goals a tactic receives
without changing its output. The implementation of R is presented in Example 5.

Example 5 (Code of the recording function)

fun R stac goal = (save (stac,goal); tactic of sml stac goal)

The function save writes the goal-tactic pair to disk increasing the number of
entries in our database of tactics. The function tactic of sml interprets the SML
code stac. The tactic is then applied to the input goal to replicate the original
behavior. After all modified theories are rebuilt, each call to a wrapped tactic in a
tactic proof is recorded as a pair containing its globalized code and its input goal.

9 Experimental Evaluation

The execution of TacticToe’s main loop in each re-proving experiment is performed on
a single CPU. An additional CPU is needed for experiments relying on asynchronous
E prover calls.

9.1 Methodology

The evaluation imitates the construction of the library: For each theorem only the
previous human proofs are known. These are used as the learning base for the pre-
dictions. To achieve this scenario we re-prove all theorems during a modified build
of HOL4. As theorems are proved, their tactical proofs and their statements are
recorded and included in the training examples. For each theorem we first attempt
to run the TacticToe search with a time limit of 60 seconds before processing the
original tactic proof. In this way, the fairness of the experiments is guaranteed by
construction: only previously declared SML values (essentially tactics, theorems and
simpsets) are accessible to TacticToe.
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Datasets: optimization and validation All top-level theorems from the standard li-
brary are considered with the exception of 440 hard problems (containing a let
construction in their proof) and 1175 easy problems (build from save thm calls).
Therefore, during the full-scale experiments, we evaluate 7164 theorems. We use
every tenth theorem of the first third of the standard library for parameter opti-
mization, which amounts to 273 theorems.

Although the evaluation of each set of parameters on its own is fair, the selection
of the best strategy in Section 9.2 should also be considered as a learning process. To
ensure the global fairness, the final experiment in Section 9.3 runs the best strategy
on the full dataset which is about 30 times larger.

9.2 Tuning TacticToe

We optimize TacticToe by tuning parameters of six different techniques: the timeout
of tactics, orthogonalization, abstraction, MCTS policy, MCTS evaluation and ATP
integration. During training, optional techniques such as orthogonalization may also
be turned off completely. TacticToe also includes other important techniques which
are run with their default parameters: feature extraction, prediction algorithms, num-
ber of premises for ATPs and MCTS evaluation radius (set by default to 10). By
choosing a set of parameters, we create a strategy for TacticToe that is evaluated
on our training set of 273 theorems. And the strategy with the highest number of
re-proven theorems is selected for a full scale evaluation.

In Table 1, the success rate of the different TacticToe strategy is presented. The
first four techniques are tested relative to the same baseline indicated in the table
by the tag “default”. This default strategy relies on a tactic time out of 0.05s, an
orthogonalization radius of 20 and a policy coefficient of 0.5. The two last techniques
are tested relative to a baseline consisting of the best set of parameters discovered
so far and are marked with the improvement over the “default” strategy. In each
subtable, each experiment differs from the current baseline by exactly one parameter.

Thanks to the larger search time available in this experiment, the timeout for
each tactic can be increased from the 0.02 seconds used in TacticToe’s initial experi-
ments [11] to 0.05 seconds. Removing tactics with similar effect as performed by the
orthogonalization process is only beneficial when running TacticToe for short period
of time. It seems that the allotted time allows a strategy running without orthogo-
nalization to catch up. Yet, side experiments show that orthogonalization becomes
relevant again when we add additional tactics through abstraction. It is best to pre-
dict a list of 16 theorems to instantiate arguments of type theorem list in tactics.
At any rate, argument prediction for abstracted tactics is the technique that have
the highest impact on the success of TacticToe. Integration of ATPs being a spe-
cialization of this technique contributes significantly as well. Experiments involving
E prover, run the ATP using a separate process asynchronously with a timeout of 5
seconds and 128 premises. The fact that Metis outperforms E prover in this setting is
due to the fact that Metis is run with a very short timeout, allowing to close different
part of search tree quickly. Because Metis is weaker that TacticToe as an ATP, it is
given less predictions. But even if an essential lemma for the proof of a goal is not
predicted, a modification on the goal performed by a tactic can change its prediction
to include the necessary lemma. This effect minimizes the drawback of relying on a
small number of predictions.
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Technique Parameters Solved (1s) Solved (60s)

Tactic time out 0.02s 154
0.05s (default) 156
0.1s 154

Orthogonalization none 105 156
radius = 10 121 156
radius = 20 (default) 121 156
radius = 40 124 156

Abstraction none (default) 156
theorems = 8 195
theorems = 16 199
theorems = 32 195

MCTS policy cpolicy = 0.4 149
cpolicy = 0.5 (default) 156
cpolicy = 0.6 153

MCTS evaluation none (default + best abstraction) 199
cexploration = 1 201
cexploration = 2 203
cexploration = 4 198

ATP integration none (default + best abstraction 203
+ best MCTS evaluation)
Metis 0.1s 216
Metis 0.2s 212
Metis 0.4s 212
E prover 213
Metis 0.1s + E prover 218

Table 1 Number of problem solved with different set of parameters for TacticToe on a training
set of 273 theorems.

The MCTS evaluation, despite relying on the largest amount of collected data,
does not provide a significant improvement over a strategy relying on no evaluation.
The main reason is that our predictor learning abilities is limited and we are using an
estimate of the provability of lists of goals for evaluation. A more accurate evaluation
could be based on an estimation of the length of the proof required to close a list of
goals.

9.3 Full-scale experiment

Based on the results of parameter tuning, we now evaluate a version of TacticToe
with its best parameters on an evaluation set of 7164 theorems from the HOL4
standard library. We compare it with the performance of E prover. For reasons of
fairness, E prover asynchronous calls are not included in the best TacticToe strategy.
The ATP E prover is run in auto-schedule mode with 128 premises. The settings for
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TacticToe are the following: 0.05 seconds tactic timeout, an orthogonalization radius
of 20, theorem list abstraction with 16 predicted theorems for instantiation, a prior
policy coefficient of 0.5, an evaluation radius of 10, an exploration coefficient of 2
and priority calls to Metis with a timeout of 0.1 seconds.

Solved (60s)

E prover 2472 (34.5%)
TacticToe 4760 (66.4%)

Total 4946 (69.0%)

Table 2 Evaluation on 7164 top-level theorems of the HOL4 standard library

The results shows that TacticToe is able to prove almost twice as many theorems
as E prover. Combining the results of TacticToe and E prover we get a 69.0% success
rate which is significantly above the 50% success rates of hammers on this type of
problems [10]. Moreover, TacticToe is running a single set of parameters (strategy),
where as hammers and ATPs have been optimized and rely on a wide range of
strategies.

Reconstruction Tactic proofs produced by TacticToe during this experiment are all
verifiable in HOL4. By the design of the proof search, reconstruction of TacticToe
proof succeeds, unless one of the tactics modifies the state of HOL4 in a way that
changes the behavior of a tactic used in the final proof. This has not occurred a single
time in our experiments. And a tactical proof generated by TacticToe during the final
experiment takes on average 0.37 seconds to replay. More details on how a proof is
extracted from the search tree is given in Section 10. Comparatively, we achieve a
reconstruction rate of 95 percent for E prover, by calling Metis for 2.0 seconds with
the set of theorems used in E prover’s proof as argument.

Table 3 compares the re-proving success rates for different HOL4 theories. Tac-
ticToe outperforms E prover on every considered theory. E prover is more suited to
deal with dense theories such as real or complex where a lot of related theorems
are available and most proofs are usually completed by rewriting tactics. Thanks
to its ability to re-use custom-built tactics, TacticToe largely surpasses E prover on
theories relying on inductive terms and simplification sets such as arithmetic, list
and f map. Indeed, TacticToe is able to recognize where and when to apply induction,
a task at which ATPs are known to struggle with.

arith real compl meas

TacticToe 81.2 74.0 79.6 31.3
E prover 59.9 72.0 67.1 12.8

proba list sort f map

TacticToe 45.8 79.5 65.3 82.0
E prover 24.1 26.5 15.8 24.7

Table 3 Percentage (%) of re-proved theorems in the theories arithmetic, real, complex,
measure, probability, list, sorting and finite map.
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Reinforcement learning All our feature vectors have been learned form human proofs.
We now can now also add goal-tactic pairs that appears in the last proof of TacticToe.
To prevent duplication of effort, orthogonalization of those tactics is essential to have
a beneficial effect. Since recording and re-proving are intertwined during evaluation,
the additional data is available for the next proof search. The hope is that the algo-
rithm will improve faster by learning from its own discovered proofs than from the
human-written proofs [32]. Side experiments show that this one shot reinforcement
learning method increases TacticToe’s success rate by less than a percent.

9.4 Complexity of the proof search

0 10 20 30 40 50 60
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1,000
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3,000

4,000

TacticToe
E prover

Fig. 3 Number of problems solved in less than x seconds.

We first investigate how TacticToe and E prover scale as the search time grows
in Figure 3. In 10 seconds, TacticToe solves 90 percent of the problems it can solve
in 60 seconds. The analysis is a bit different for E prover. Indeed, we can clearly
deduce from the bump at 30 seconds that E prover is using at least two strategies
and probably more. Strategies are a useful method to fight the exponential decline
in the number of newly proven theorems over time. Therefore, integrating strategy
scheduling in TacticToe could be something to be experimented with.

In order to appreciate the difficulty of the evaluation set from a human per-
spective, the length distribution of human proofs in the validation set is shown in
Figure 4. It is clear from the graph that most of the human proofs are short. The
proofs found by TacticToe follow a similar distribution. If TacticToe finds a proof,
there is about a 50 percent chance that it will be shorter than what a human would
come up with.
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Fig. 4 Number of tactic proofs with x tactic units.
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Fig. 5 Percentage of problem solved with respect to the length of the original proof until
length 20.

In Figure 5, we regroup problems by the length of their human proof to measure
how well TacticToe and E prover cope with increasing levels of difficulty. As expected,
the longer the original proof is, the harder it is for TacticToe and E prover to re-prove
the theorem on their own. The performance of TacticToe is compelling with more
than half of the theorems that required a proof of length six being re-proven. It is
also consistently better than E prover for any proof length.
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10 Minimization and Embellishment

When TacticToe finds a proof of an initial goal, it returns a search tree T where the
root node containing the initial goal is solved. In order to transform this search tree
into a tactic proof, we need to extract the tactics that contributed to the proof and
combine them using tactic combinators.

By the design of the search, a single tactic combinator, THENL, is sufficient. It
combines a tactic t with a list of subsequent ones, in such a way that after t is called,
for each created goal a respective tactic from the list is called.

Let Tsol be a partial function that from a goal g returns a tactic t for which A(g, t)
is solved in T. The proof extraction mechanism is defined by mutual recursion on
goals and nodes of T by the respective function Pgoal and Pnode:

Pgoal(g) =def Tsol(g) THENL Pnode(A(g, Tsol(g)))
Pnode(a) =def [Pgoal(g1), . . . , Pgoal(gn)] with G(a) = g1, . . . , gn

The extracted tactic proof of T is Pgoal(groot). We minimally improve it by sub-
stituting THENL by THEN when the list of goals is a singleton and removing THENL
[] during the extraction phase. Further post-processing such as eliminating unnec-
essary tactics and theorems has been developed and improves the user experience
greatly [1].

Proof Length Minimization A fast and simple minimization is applied when process-
ing the final proof. If the tactic A THEN B appears in the proof and has the same
effect as B then we can replace A THEN B by B in the proof. Optionally, stronger
minimization can be obtained by rerunning TacticToe with a low prior policy coef-
ficient, no prior evaluation and a database of tactics that contains tactics from the
discovered proof only.

Tactic Arguments Minimization Let t be a tactic applied to a goal g containing a
list l (of theorems) as argument. And let t′ be the tactic t where one element e of l
as be removed. If t and t′ have the same effect on g then t′ can replace t in the final
proof. This process is repeated for each element of l. This is a generalization of the
simplest method used for minimizing a list of theorems in “hammers” [3].

Embellishment Without embellishment, the returned tactic is barely readable as it
contains information to guarantees that each SML subterm is interpreted in the way
in any context. Since we return the proof at a point where the SML interpreter is
in a specific state, we can strip unnecessary information, such as module prefixes. If
possible, we group all local declarations in the proof under a single let binding at
the start of the proof. We also replace extended terms by their quoted version. All
in all, if a prettified tactic tp has the same effect its original to, we replace tp by to
in the proof.

The total effect of these minimization and embellishment techniques on the read-
ability of a tactic proof is depicted in Example 6.
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Example 6 (Theorem EVERY MAP)
Before minimization and embellishment:

boolLib.REWRITE TAC [DB.fetch "list" "EVERY_CONJ", DB.fetch "list" "EVERY_MEM",
DB.fetch "list" "EVERY_EL", . . . , combinTheory.o DEF] THEN

BasicProvers.Induct on [HolKernel.QUOTE " (*#loc 1 11380*)l"] THENL
[BasicProvers.SRW TAC [] [],
simpLib.ASM SIMP TAC (BasicProvers.srw ss ()) [boolLib.DISJ IMP THM,
DB.fetch "list" "MAP", DB.fetch "list" "CONS_11", boolLib.FORALL AND THM]]

After minimization and embellishment:

Induct on ‘l‘ THENL
[SRW TAC [] [], ASM SIMP TAC (srw ss ()) [DISJ IMP THM, FORALL AND THM]]

11 Case Study

Since the proofs generated by TacticToe are meant to be parts of a HOL4 develop-
ment, it interesting to compare their quality with the original human proofs. The
quality of a proof in HOL4 can be measured in terms of length, readability, main-
tainability and verification speed. We study these properties in three examples taken
from our full-scale experiment. We list the time needed by HOL4 to check a proof in
parentheses.

We start with Example 7, which proves that greatest common divisors are unique.
The human formalizer recognized that it follows from two theorems. The relevance
filtering of TacticToe is not as powerful as that used in hammers and is therefore not
able to find the DIVIDES ANTISYM property. The proof proceeds instead by rewriting
the goal with the definitions then splitting the goal into multiple cases until the
goal obligations are similar to DIVIDES ANTISYM. As expected, TacticToe’s proof also
takes much longer to check.

Example 7 IS GCD UNIQUE in theory gcd

∀a b c d. is gcd a b c ∧ is gcd a b d ⇒ (c = d)

Human proof (5 milliseconds)

PROVE TAC[IS GCD, DIVIDES ANTISYM]

TacticToe proof (80 milliseconds)

STRIP TAC THEN
REWRITE TAC [fetch "gcd" "is_gcd_def"] THEN
REPEAT Cases THENL

[METIS TAC [],
REWRITE TAC [SUC NOT, ALL DIVIDES 0, compute divides] THEN
METIS TAC [NOT SUC],

METIS TAC [NOT SUC, DIVIDES ANTISYM],
METIS TAC [LESS EQUAL ANTISYM, DIVIDES LE, LESS 0],
METIS TAC [],
RW TAC numLib.arith ss [divides def],
METIS TAC [DIVIDES ANTISYM],
METIS TAC [LESS EQUAL ANTISYM, DIVIDES LE, LESS 0]]
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In Example 8, we try to prove that for any surjective function f from s to t, there
exists an injective function g from t to s such that f o g is the identity function. The
human proof is quite complicated. In contrast, TacticToe finds a much smaller proof
that expands the definition of injectivity and surjectivity and calls Metis. However,
the TacticToe’s proof takes much longer to check due to the proof search happening
inside Metis.

Example 8 SURJ INJ INV in theory pred set

∀f s t. SURJ f s t ⇒ ?g. INJ g t s ∧ ∀y. y IN t ⇒ (f (g y) = y)

Human proof (2 milliseconds)
REWRITE TAC [IMAGE SURJ] THEN
DISCH TAC THEN Q.EXISTS TAC ‘THE o LINV OPT f s‘ THEN
BasicProvers.VAR EQ TAC THEN REPEAT STRIP TAC THENL

[irule INJ COMPOSE THEN Q.EXISTS TAC ‘IMAGE SOME s‘ THEN
REWRITE TAC [INJ LINV OPT IMAGE] THEN REWRITE TAC [INJ DEF, IN IMAGE] THEN
REPEAT STRIP TAC THEN REPEAT BasicProvers.VAR EQ TAC THEN
FULL SIMP TAC std ss [THE DEF],

ASM REWRITE TAC [LINV OPT def, o THM, THE DEF] THEN
RULE ASSUM TAC (Ho Rewrite.REWRITE RULE

[IN IMAGE’, GSYM SELECT THM, BETA THM]) THEN ASM REWRITE TAC []]

TacticToe proof (50 milliseconds)
SRW TAC [] [SURJ DEF, INJ DEF] THEN METIS TAC []

In Example 9, we prove a theorem about lists, a domain where TacticToe excels
compared to ATPs. Given two list l1 and l2 where the length of l1 (denoted p) is
less than a natural number n, the theorem states updating the nth element of the
concatenation of l1 and l2 is the same as updating the mth element of l2 where
m = n−p. Again, the TacticToe’s proof is much more readable. It starts by applying
induction on l. It solves the base case of the induction by rewriting and proceeds
by cases on n = 0 or n > 0 in the induction hypothesis. It finalizes the proof
with a short call to Metis using the definition of LUPDATE. Here, TacticToe’s proof is
arguably smaller, faster and easier to understand and maintain. Such proofs after an
expert review could replace the their respective original human proofs in the HOL4
repository.

Example 9 LUPDATE APPEND2 in theory rich list

∀l1 l2 n x. LENGTH l1 ≤ n ⇒
(LUPDATE x n (l1 ++ l2) = l1 ++ (LUPDATE x (n − LENGTH l1) l2))

Human proof (63 milliseconds)
rw[] THEN simp[LIST EQ REWRITE] THEN Q.X GEN TAC ‘z‘ THEN
simp[EL LUPDATE] THEN rw[] THEN simp[EL APPEND2,EL LUPDATE] THEN
fs[] THEN Cases on ‘z < LENGTH l1‘ THEN
fs[] THEN simp[EL APPEND1,EL APPEND2,EL LUPDATE]

TacticToe proof (17 milliseconds)
Induct on ‘l1‘ THENL [SRW TAC [] [],
Cases on ‘n‘ THENL [SRW TAC [] [],
FULL SIMP TAC (srw ss ()) [] THEN METIS TAC [LUPDATE def]]]
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In Example 10, we experiment with TacticToe on a goal that does not originate
from the HOL4 library. The conjecture is that the set of numbers {0, ..., n+m− 1} \
{0, ..., n−1} is the same as the set obtained by adding n to everything in {0, ...,m−1}.
In this example, TacticToe uses the simplification set ARITH ss to reduce arithmetic
formulas. This exemplifies another advantage that TacticToe has over ATPs, namely
its ability to take advantage of user-defined simplification sets.

Example 10 count (n+m) DIFF count n = IMAGE ((+) n) (count m)
SRW TAC [ARITH ss] [EXTENSION, EQ IMP THM] THEN
Q.EXISTS TAC ‘x − n‘ THEN
SRW TAC [ARITH ss] []

12 Related Work

There are several essential components of our work that are comparable to previous
approaches: tactic-level proof recording, tactic selection through machine learning
techniques and automatic tactic-based proof search. Our work is also related to
previous approaches that use machine learning to select premises for the ATP systems
and guide ATP proof search internally.

In HOL Light, the Tactician tool [1] can transform a packed tactical proof into a
series of interactive tactic calls. Its principal application was so far refactoring the
library and teaching common proof techniques to new ITP users. In our work, the
splitting of a proof into a sequence of tactics is essential for the tactic recording
procedure, used to train our tactic prediction mechanism.

SEPIA [13] can generate proof scripts from previous Coq proof examples. Its
strength lies in the ability to produce likely sequences of tactics for solving domain
specific goals. It operates by creating a model for common sequences of tactics for
a specific library. This means that in order to propose the next tactic, only the
previously called tactics are considered. Our algorithm, on the other hand, relies
mainly on the characteristics of the current goal to decide which tactics to apply
next. In this way, our learning mechanism has to rediscover why each tactic was
applied for the current subgoals. It may lack some useful bias for common sequences
of tactics, but is more reactive to subtle changes. Indeed, it can be trained on a large
library and only tactics relevant to the current subgoal will be selected. Concerning
the proof search, SEPIA’s breadth-first search is replaced by MCTS which allows
for supervised learning guidance in the exploration of the search tree. Finally, SEPIA
was evaluated on three chosen parts of the Coq library demonstrating that it globally
outperforms individual Coq tactics. Here, we demonstrate the competitiveness of our
system against E prover on the HOL4 standard library.

ML4PG [22,15] groups related proofs using clustering algorithms. It allows Coq
users to inspire themselves from similar proofs and notice duplicated proofs. Com-
paratively, our predictions come from a much more detailed description of the target
goal. TacticToe can also organize the predictions to produce verifiable proofs and is
not restricted to user advice.

Proof patching [27] is an approach that attempts to learn the proof changes
necessary for a modification of a prover library or system. The approach is hard
to apply for new proofs. Following this idea, TacticToe could also try to learn from
different versions of the prover library.
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It is important to consider the strength of the language used for building proofs
and proof procedures when designing a system such as TacticToe. Indeed, such system
will be re-using those procedures. In Isabelle, the language Eisbach [24] was created
on top of the standard tactic language by giving access to constructors of the tactic
language to the end-user. The language PSL [26] was also developed. It can combine
regular tactics and tools such as Sledgehammer. In Coq, the Ltac [7] meta language
was designed to enrich the tactic combinators of the Coq language. It adds function-
alities such as recursors and matching operators for terms and proof contexts. In
HOL4, the strength of SML as a proof strategy language has been demonstrated by
the implementation of complex proof procedures such as Metis.

Machine learning has also been used to advise the best library lemmas for new
ITP goals. This can be done either in an interactive way, when the user completes the
proof based on the recommended lemmas, as in the Mizar proof advisor MizAR [31,
21], or attempted fully automatically, where such lemma selection is handed over to
the ATP component of a hammer system, as in the hammers for HOL4 [10], HOL
Light [19] and Isabelle [4].

Internal learning-based selection of tactical steps inside an ITP is analogous to
internal learning-based selection of clausal steps inside ATPs such as MaLeCoP [33]
and FEMaLeCoP [20]. These systems use the naive Bayes classifier to select clauses
for the extension steps in tableaux proof search based on many previous proofs.
Satallax [5] can guide its search internally [9] using a command classifier, which can
estimate the priority of the 11 kinds of commands in the priority queue based on
positive and negative examples.

13 Conclusion

We proposed a new proof assistant automation technique which combines tactic-
based proof search with machine learning prediction. Its implementation, TacticToe,
achieves an overall success rate of 66.4% on 7164 theorems of the HOL4 standard
library, surpassing E prover with auto-schedule. Its effectiveness is especially visible
on theories which use inductive data structures, specialized decision procedures,
and custom built simplification sets. Thanks to the learning abilities of TacticToe,
the generated tactic proofs often reveal the high-level structure of the proof. We
therefore believe that predicting ITP tactics based on the current goal features is a
very reasonable approach to automatically guiding proof search, and that accurate
predictions can be obtained by learning from the knowledge available in today’s large
formal proof corpora.

To improve the quality of the predicted tactics, we would like to predict other
type of arguments independently, as it was done for theorems. In this direction,
the most interesting arguments to predict next are terms as they are ubiquitous
in tactics. Further along the way, new tactics could be created by programming
them with any construction available in SML. The proof search guidance can also be
improved, for example by considering stronger machine learning algorithms such as
deep neural networks as a model for the policy and evaluation in MCTS. The quality
of such models could be enhanced by training and testing existing and synthesized
tactics. Conjecturing suitable intermediate steps could also allow TacticToe to solve
problems which require long proofs by decomposing it into multiple easier steps.
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